Exercice 1 Loi d'une variable aléatoire

Dans une urne contenant 2 boules blanches et 5 rouges, on tire 3 boules une par une sans remise.

Déterminer la loi des variables aléatoires X et Y où X représente le nombre de boules blanches tirées, et Y le nombre de boules rouges tirées.

Exercice 2 Loi géométrique

On lance une pièce équilibrée une infinité de fois.

Déterminer la loi de la variable aléatoire X donnant le rang du premier pile obtenu, et valant 0 si l'on n'obtient jamais pile.

Exercice 3 Conditions pour une loi de probabilité

- 1. Déterminer une CNS sur le réel a pour que la suite $(p_n)_{n\geqslant 1}$ définie par $p_n=\frac{a}{2^n}$ définisse bien une loi.
- **2.** Déterminer a pour que la suite a^2 , 2a(1-a) et $(1-a)^2$ définisse bien une loi.

Exercice 4 Loi d'un maximum

Dans une urne possédant n jetons numérotés de 1 à n, on tire 2 jetons, l'un après l'autre, avec remise.

On appelle X la variable aléatoire égale au plus grand des deux numéros tirés.

Déterminer la loi de X.

Exercice 5 Loi d'une transformée

Soit X une variable aléatoire de loi donnée par :

x	-1	0	1
$\mathbb{P}(X=x)$	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{6}{10}$

Déterminer la loi de $Y = X^2 + 3$.

Exercice 6 Fonction de répartition

Tracer la fonction de répartition de la variable aléatoire X de loi donnée par :

$$\begin{array}{c|c|c} x & -1 & 2 & 3 \\ \hline \mathbb{P}(X=x) & \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \end{array}$$

Exercice 7 Espérance d'une variable aléatoire

Calculer l'espérance de la variable aléatoire X définie dans l'exercice précédent.

Exercice 8 Espérance d'une variable aléatoire

Soit X la variable aléatoire telle que $X(\Omega) = \mathbb{N}$ et

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = e^{-2} \frac{2^k}{k!}.$$

Montrer que X admet une espérance et la calculer.

Exercice 9 Moment d'ordre r

Soit X une variable aléatoire de loi donnée par $X(\Omega) = \mathbb{N}$ et

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = \frac{1}{e \times k!}.$$

Montrer que X admet un moment d'ordre 3 et le calculer.

Indication: on pour utiliser $k^3 = k(k-1)(k-2) + 3k(k-1) + k$.

Exercice 10 Théorème de transfert

Soit X une variable aléatoire de loi donnée par

x	1	2	4
$\mathbb{P}(X=x)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Montrer que $Y = \sqrt{X}$ admet une espérance et la calculer.

Exercice 11 Théorème de transfert

Soit X une variable aléatoire de loi donnée par $X(\Omega) = \mathbb{N}^*$ et

$$\forall k \in \mathbb{N}^*, \mathbb{P}(X = k) = \frac{1}{2^k}.$$

Montrer que $Y = e^{-X}$ admet une espérance et la calculer.

Exercice 12) Théorème de transfert

Soit X une variable aléatoire de loi donné par $X(\Omega)=\mathbb{N}$ et $\forall k\in\mathbb{N},$ $\mathbb{P}(X=k)=e^{-k}-e^{-k-1}.$

- 1. Vérifier que la loi de X ainsi posée est bien définie.
- 2. Montrer que la variable aléatoire $Y=2^X$ admet une espérance et la calculer.

Exercice 13 Espérance d'une suite de variables aléatoires

On lance indéfiniment un dé équilibré.

On considère les suites $(X_n)_{n\geqslant 1}$ et $(Y_n)_{n\geqslant 1}$ de variables aléatoires définies par :

 $X_n =$ nombre de 6 obtenus aux n premiers lancers

$$Y_n = \begin{cases} 1 & \text{si on obtient 6 au nième lancer} \\ 0 & \text{sinon} \end{cases}$$

Calculer $E(Y_{n+1})$ puis montrer par récurrence que $\forall n \ge 1, E(X_n) = \frac{n}{6}$.

Exercice 14 Variance d'une variable aléatoire

Calculer la variance de la variable aléatoire X de loi donnée par :

x	-1	2	3
$\mathbb{P}(X=x)$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{6}$

- en utilisant la définition
- en utilisant le théorème de Koenig-Huygens

Exercice 15 Espérance et variance

Soient p et q des réels tels que 0 et <math>q = 1 - p.

Soit X la variable aléatoire de loi donnée par $X(\Omega)=\mathbb{N}^*$ et

 $\forall k \in \mathbb{N}^*, \mathbb{P}(X = k) = q^{k-1}p.$

Montrer que X admet une espérance et une variance et en donner les valeurs.

Exercice 16 Espérance et variance

Soit X une variable aléatoire de loi donnée par $X(\Omega)=\mathbb{N}$ et

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = \frac{2}{3^{k+1}}.$$

- 1. Calculer $\mathbb{P}(X \ge 2)$.
- **2.** Montrer que X admet une espérance et la calculer.
- **3.** Montrer que X admet une variance et la calculer.

Exercice 17 Espérance et variance

Soit $a \in \mathbb{R}$ et soit X la variable aléatoire définie par $X(\Omega) =$

$$[0;3], P(X=0) = P(X=3) = a \text{ et } P(X=1) = P(X=2) = \frac{1}{2} - a.$$

- 1. Quelles sont les valeurs possibles de a?
- **2.** Justifier l'existence et calculer E(X).
- 3. Justifier l'existence et calculer V(X) de deux façons : une première fois en utilisant la définition de la variance et une seconde fois avec la formule de Koenig-Huygens.
- **4.** Quelle est la loi de Y = X(X-1)(X-2)(X-3)? Déterminer E(Y) et V(Y).
- 5. On pose Z = X(X 1). Sans déterminer la loi de Z, calculer E(Z).
- 6. Déterminer la loi de Z et retrouver son espérance.

Exercice 18 Espérance

Une urne contient initialement une boule blanche et une boule noire. on effectue des tirages successifs d'une boule selon le protocole suivant :

- Si elle est noire, on arrête l'expérience
- Si elle est blanche, on la remet dans l'urne, on y ajoute une autre boule blanche et on poursuit l'expérience en effectuant un autre tirage

On réitère l'expérience et les tirages jusqu'à l'obtention de la première boule noire.

Soit X la variable égale au rang d'obtention de la première boule noire et $Y = \frac{1}{X}$.

- 1. Préciser $X(\Omega)$ puis justifier que $\forall k \in X(\Omega), \mathbb{P}(X=k) = \frac{1}{k(k+1)}$.
- 2. X admet-elle une espérance?
- 3. Montrer que Y admet une espérance (on pourra utiliser $\frac{1}{k^2(k+1)} = \frac{1}{k+1} \frac{1}{k} + \frac{1}{k^2}.$

Exercice 19 Espérance

Un joueur mise un euro sur un entier entre 1 et 6 puis il jette 3 dés.

- Si l'entier choisi sort respectivement 1,2 ou 3 fois, alors le joueur gagne respectivement 2,3 ou 4 euros
- Sinon le joueur perd sa mise

Soit X la variable aléatoire égale au gain algébrique du joueur (en prenant en compte sa mise initiale).

Soit
$$Y = |X|$$
.

- 1. Préciser $X(\Omega)$ puis déterminer la loi de X.
- **2.** Calculer E(X). Le jeu est-il favorable au joueur?
- **3.** Déterminer la loi de Y.

Exercice 20 Vers le concours

Une urne contient 2 boules blanches et n-2 boules rouges $(n \ge 2)$.

On tire les boules une à une sans remise jusqu'à l'obtention de la première boule blanche.

On appelle X, le rang d'apparition de la première boule blanche et Y, le nombre de boules restant dans l'urne à la fin de l'expérience.

1. Préciser $X(\Omega)$ puis montrer que pour tout $k \in X(\Omega)$,

$$\mathbb{P}(X=k) = \frac{2(n-k)}{n(n-1)}.$$

- **2.** Montrer que $E(X) = \frac{n+1}{3}$.
- **3.** Exprimer Y en fonction de X puis E(Y) en fonction de n.